
LO

i 0. DTIC< > SELECTEMM
I DE019.198i9

SAMfPLINGYDATA ONTO
RECTANGULAR GRIDS

FOR VOLUME VISUALIZATION

THESIS

Raymond Phillips Lentz, III
First Lieutenant, USAF

AFIT/GCE/ENG/89D-4

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
WT f1UT1CNTEME 'r

_______. _ 89 12 18 095$.plmmvod i, m~utlerd

AFIT! GCE/ENG/89D-4

SAMPLING DATA ONTO

RECTANGULAR GRIDS

FOR VOLUME VISUALIZATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Raymond Phillips Lentz, III, B.S.

First Lieutenant, USAF

December, 1989

Approved for public release; distribution unlimited

... ,=. ,.=,. ,.. ===. i aint nnnmul n • id1

Preface

The purpose of this study was to dcvelop a method for sampling three di-

mensional scalar data onto a rectangular grid for image display. Visually analyzing

data using computer graphics techniques such as volume rendering is rapidly gaining

popularity with scientists and engineers.

Many techniques for rendering volume images capitalize on the regular struc-

ture of rectangular grids. However, a rectangular grid is often not the most con-

venient structure for computer simulations using finite-element analysis. This is

particularly true for computational, or nu, .erical, simulations involving fluid flow.

In this thesis investigation I developed two methods for sampling scattered data

and provide two filtering functions for one of the methods. Testing was accomplished

using data from an ;trtiial fluid flow simulation. The results are very promising and

the work warrants further investigation.

During the course of this thesis I received a great deal of help from many people.

I owe thanks to Maj Phil Amburn, my faculty advisor, for his support without which

I would have been lost much of the time. I also owe thanks to Mr Bob Conley and the

Air Force Weapons Lab for their generous support of this research. Special thanks

are in order for Dr Phil Webster and Mr Stephen Scherr from the Wright Research

and Development Center for supplying the test data, and answering many questions.

I also owe thanks to Dr Gary Lamont and Capt Phil Beran for their guidance and

suggestions. Finally, I want to thank my wife for her support and understanding

during the long months spent at AFIT. For

Raymond Phillips Lentz, III 0

Avatlbllt'Y Code _

SI;AvhiJ.1 nd-/or
11 ~~Dist pa.1

Table of Contents

Page

P reface

Table of Contents.....

List of Figures Vi

List of Tables viii

Abstract ix

I. Introduction. 1

1.1 Background. 1

1.2 Purpose 2

1.3 Problem 2

1.4 Scope 3

1.5 Approach. 4

II. Logical Development 7

2.1 Introduction I

2.2 Background. 7

2.3 Ray Casting. 8

2.4 Ray Tracing Improvement Techniques. 9

2.5 Direct Ray Tracing of Data Volumes 12

2.6 Su~nary of Current Knowledge. 17

Page

III. Requirements Analysis 21

3.1 Introduction 21

3.2 Specification Method 21

3.3 Requirements Development 23

IV. System Design 26

4.1 Introduction 26

4.2 System Initialization 27

4.3 Carving Grids 30

4.4 Building A Rectangular Grid 30

4.5 Sampling Methds 34

4.6 Saving the Grid to a Disk File 38

4.7 Modifications to VIPER 39

4.8 Compiling and Running the Program 40

V. Testing and Validation 42

5.1 Introduction 42

5.2 Software Functional Testing 42

5.3 Validation Testing 43

5.4 Validation of the Sampling Concept 44

5.5 Test Results From Varying the Sampling Parameters . . . 57

VI. Conclusions and Recommendations 63

6.1 Introduction 63

6.2 Conclusions 63

6.3 Recommendations 66

Appendix A. Requirements Analysis 70

iv

Page

~ppendix B. System Design 78

B. I Introduction 78

Appendix C. Unix Manual Page. 83

Bibliography. 84

Vita. 86

V

List of Figures

Figure Page

1. A Two-Dimensional Arbitrary Shaped Grid 15

2. A Rectangular Grid Overlaid on an Arbitrary Shaped Grid 16

3. Top-Level IDEF0 Diagram for the Grid Mapping Program 22

4. The High Level Structure Chart for the Grid Mapping Program . . 26

5. A Grid with Constant Plane Spacing 31

6. Coordinate Bins 32

7. A Grid with Variable Plane Spacing 34

8. Density Weighting Functions 36

9. A Gaussian Weighting Function 37

10. Concentric Spheres, External (Upper) and In+ernal (Lower) Views 46

11. Cylindrical Shells, External (Upper) and Internal (Lower) Views. 47

12. Conic Shells, External (Upper) and Internal (Lower) Views 49

13. The Mach 1.0 Shell From Data Set #1 (PLOT3D Upper, VIPER Lower) 51

14. The Mach 2.5 Shell From Data Set #1 (PLOT3D Upper, VIPER lower) 52

15. The Mach 1.9 Shell From Data Set #1 (PLOT3D Upper, VIPER lower) 53

16. The Mach 1.0 Shell From Data Set #2 (PLOT3D Upper, VIPER Lower) 54

17. The Mach 2.5 Shell From Data Set #2 (PLOT3D Upper, VIPER Lower) 55

18. The Mach 1.9 Shell From Data Set #2 (PLOT3D Upper, VIPER Lower) 56

19. A Mach 1.9 Shell From Data Set #1 Using Variable Plane Spacing 60

20. A Z-Buffer Mach 1.9 Shell From Data Set #1 With Constant Plane

Spacing 61

21. A Z-Buffer Mach 1.9 Shell From Data Set #1 With Variable Plane

Spacing 62

22. IDEF0 A-0 Diagram 71

23. IDEF0 AO Diagram 73

vi

Figure Page

24. IDEFo Al Diagram 75

25. IDEFo A2 Diagram 77

26. Level Zero Detailed Design Structure Chart79

27. The Initialization Detailed Design 80

28. The Grid Processing Detailed Design 81

29. The Data Placement Detailed Design 82

vii

List of Tables

Table Page

1. Enumerated Requirements for a Grid Mapping Program 25

2. Parameter File Structure 29

3. Mach Number Values for Fabricated Data Sets 58

viii

AFIT/ GCE/'ENG/89D-4

Abstract

Three dimensional arrays of scalar data representing spatial volumes arise in

many scientific applications. Analysis of this type of data is difficult because of the

size of the data sets. Computer graphics techniques for rendering images of three

dimensional data have been developed recently.

In computational fluid flow analysis, methods for constructing three dimen-

sional numerical grids are being refined. This technique is particularly suited for

simulations involving finite element analysis. The three dimensional grids produced

by these methods are generally not rectangular in shape.

Many graphics methods for rendering three dimensional volume images take

advantage of the physical structure of rectangular grids. Because finite element

analysis is useful in fields other than fluid flow analysis and the numerical grid

has promising applications, methods for handling arbitrarily shaped data grids are

needed.

This tuesis investigation develops a method for sampling data in virtually any

form onto rectangular grids. Two sampling methods are developed and implemented

using two different sampling filters. The results were successful in rendering images

of both fabricated data and data from a fluid flow simulation.

Input data distribution characteristics affecting the sampling techniques were

identified, and possible solutions are providtd. The goal of +]i' study w4z tn Aeter-

mine if data could be successfully sampled from a grid of arbitrary shape onto a grid

of rectangular shape. The results indicate that this is indeed poscible.

;x

SAMPLING DATA ONTO

RECTANGULAR GRIDS

FOR VOLUME VISUALIZATION

I. Introduction

1.1 Background

Three-dimensional arrays of scalar data representing spatial volumes arise in
many scientific applications (5). Volume rendering is a relatively new graphics tech-

nique for visualizing this type of data. Researchers can analyze visible and invisible

phenomeuoii present in virtually any type of data collected, or computed, in three-

dimensional scalar form using volume rendering. This method of visual analysis

promises to greatly reduce the time required to analyze the rapidly growing number

of data sets produced by computer simulations. It aso has promising applications

in the medical field in areas such as computerized axial tomography (CAT) (7).

Much of the published literature focuses on visualizing medical data, but the

algorithms used for volume rendering are not dependent on the source, or type, of

data. Volume rendering algorithms have typically been implemented using either cell

processing or voxel processing techniques(23:60). A universal definition for the two

techniques has not been established, but this study accepts the definition given by

(24). Cell processing techniques assume that each cell, or volume element, has func-

tional data values associated with each of its eight vertices, which vary continuously

within, or outside, the cell volume. Voxel tchniques, on the other hand, assume a

single functional value is associated with each volume element, and has a constant

value throughout the element.

• • , , a t I I I "- i1

Cell processing techniques have been implemented in two ways (23:61). First,

the functional values can be integrated through each cell, and their contribution to

t .e image is found by projecting the integration onto the two-dimen3ional viewing

screen. The second way to process a volume cell is to point sample the data using a

form of ray tracing. In general, the faster of the two methods has been the simplified

form of ray tracing known as ray casting (23:60).

1.2 Purpose

The purpose of this study is to design a method for sampling data onto rect-

angular grids for visual display using existing volume rendering software. The data

may be organized on arbitrarily shaped curvilinear grids, or be scattered in space

with no particular structure. The system used to generate images from the trans-

formed grids is the Volumetric Imagery Program for Engineering Research (VIPER)

developed at the Air Force Institute of Technology by Captain David Bridges (1).

1.3 Problem

Mch of the emphasis in developing volume rendering algorithms has been

focused on the physical structure of the data. Medical data produced by X-ray

Machines or Computer Axial Tomography (CAT) scans is two-dimensional. These

two-dimensional slices can be combined to form three-dimensional data sets (13). If

these three-dimensional data sets are shaped as rectangular meshes, a ray casting,

or other cell processing algorithms, can take advantage of the structure to speed up

the grid traversai during the image generation process. Unfortunately, not all scalar

data grids are structured in rectangular meshes.

A popular grid construction technique used in fluid flow research is the numer-

ically generated grid (21). Because of the recent advancements in computers, fluid

flow researchers can use these grids to simulate many problems previously requir-

ing rnodels and wind tunnel testing. The grids are constructed around the physical

• . I II I | I II2

object under test, and a-,! transformed to use standard partial differential equation

solving routines. The transformations can be either continuous or in discrete tabu-

lar form. They are applied to the equations used to calculate the data, rather than

on the physical grid points. This means the final value of the calculated data is
independent of the transformations, and the resalts are three-dimensi grids of

arbitrary shape (21).

C&mputational fluid flow researchers produce massive quattities of scalar data

structured in arbitrary shape. Much of the impetus for numerical grid generation

techniques came directly from the field of computational fluid dynamics (21). Nu-

merical grid generation is still a reiatively new technique, and as advancements are

made uses for these g-;ds are likely to spread to other fields of reseL.-ch. For this

reason, new methods allowing visualization of data arranged in no n-uniform, three-

dimensional meshes are needed.

1.4 Scope

VIPER uses ray casting to generate images and depends on rectangular, or-

thogonal, thre--dimensional grids. The volume traversal algorithm takes advantage

of the uniform structure of rectangular grids. A ray direction and starting point

provide enough infcrmation to rapidly determine a location within the grid. VIPER

does not require a data set to be defined on a rectangular grid with uniform spacing

between the planes, but it does require that all the planes along e7 ch principie axiS

in the cartesian coordinate system be parallel to each other and orthogonal to the

axis. The the number of planes is limited only by the computer memory resources

available.

A method of transforming a data set into a form VIPER processes directly is

developed in this study. I 1his transformation is a separate pre-pocessing step, and

does not affect the time required to render images. The reason for making this a

separate processing step is simply to save rendering time. A data set need only be

3

transformed once, but many images can be generated from that data. The method

developed is a technique for sampling data onto a rectangular grid.

All th,. software developed is written in C and operates under UNIX, but is

generic enough that it can be easily transported to any Machine having a C compiler.

The C programming language was chosen because it is the language used most in

computer graphics. The UNIX operating system was used because of its availability

and its support of the C programming language. The output format for the the

rectangular grids is designed to satisfy VIPER's input requirements, but can be

easily modified for use with other volume rending software packages.

1.5 Approach

This project was accomplished in several separate, but not necessarily inde-

pendent steps. The VIPER program was thoroughly analyzed, a search of current

literature was conducted, a requirements analysis was performed, and a system de-

sign was implemented. In addition, testing, validation, and documentation of the

code was completed.

Analysis of VIPER. The VIPER program was analyzed to gain an under-

standing of its volume rendering technique. This was necessary for two reasons.

First, modifications were necessary in order for the program to accept tiansformed

data. Second, a complete understanding was necessary to use the program to gen-

erate images of the transformed data.

Literature Search. Current literature on ray tracing techniques and volume

rendering methods was reviewed. The goal of the review was two fold. First, the

background necessary for the requiremenits analysis was established. Secundly, an

understanding of ray tracing techniques and volume rendering methods was necessary

to determine the appropriate method fcr handling arbitrary grids. The results of the

literature review are presented in Chapter 2.

4

Requirements Analysis. The requirements for sampling scattered data were

defined. The goal of the analysis was to determine the functions and parameters

necessary to implement the program. The tool used to accomplish the requirements

analysis was the Air Force Materials Lab's IDEF0 requirements analysis language.

IDEF0 is explained in Chapter 3, and the analysis is presented both in Chapter 3,

and Appendix A.

System Design. A design was developed for sampling scattered data onto a

rectangular grid based on the requirements analysis. The tool used to accomplish

the design was the Structured Analysis and Design Technique (SADT) diagrams.

The system design is presented in Chapter 4 and Appendix B.

Implementation. The design for sampling scattered data was implemented

on a scientific workstation. A workstation was used because of availability, and

previous familiarity with the Unix operating system. The workstation is quickly

becoming the tool of choice for both scientists and engineers. This system is more

flexible and useful by operating within the workstation environment. The detailed

design specifics are presented in Chapter 4.

Testing and Validation. The design was tested against the requirements,

and the results were validated using data from a computational fluid dynamics finite-

element analysis. Because of the size of the data sets, and the processing time

involved, two data sets were chosen for testing. The images were compared to results

from NASA's PLOT3D (25) image rendering software. The scientists supplying

the data provided coments on the images. The testing and validation results are

presented in Chapter 5.

System Documentation. A user's guide is informally presented in Chapter 4

with the system detailed design. It describes not only how to use the grid transfor-

mation routine, but also changes made to VIPER. Fully documented source listings

for the grid transformation package can be obtained by contacting the Electrical and

Computer Engineering department at the Air Force Institute of Technology.

5

Results and Conclusions. Finally, the results cf this project are discussed

in Chapter 6. The tool developed in this project is a data transformation tool. The

success of the tool is discussed from a qualitative perspective. No attempt is made to

validate filtering, or implemented convolution methods. Recommendations for future

researcb and enhancements are discussed based on the findings in this project.

6

I. Logical Development

2. 1 Introduction

A logical development for the sampling program is presented in this chapter.

Section 2.3 contains information necessary to familiarize readers with ray casting

techniques. Ray tracing improvement techniques are briefly discussed in Section 2.4

to establish the background necessary to justify design decisions. Finally, a review

of current literature on volume rendering methods is presented in Section 2.6.

2.2 Background

The goal of this study is to sample data from grids of arbitrary shape onto a

grid of rectangular form. To define a rectangular grid, first consider a grid in two-

dimensional cartesian space. The grid coordinate system is orthogonal, and obeys

the right hand rule. The grid is formed with straight lines that are parallel to one

coordinate axis, and perpendicular to the other. The intersection of these lines form

the vertices of rectangular cells within the grid. The lines can be variably spaced

along either coordinate direction, but only one line can be at a given point along the

axis. The grid lies in one plane in the coordinate system. All intersecting lines form

either 90, or 180 degree angles with every other line at intersection points.

A three-dimensional grid can be formed using two, or more, of the two-

dimensional grids. The grids are stacked on top of each other with only one grid occu-

pying any given plane. They are connected with straight lines at every vertex of every

cell. If the three-dimensional grid satisfies the definition of the wo-dimensional grid

when viewed perpendicular to each of the six faces, it is a rectangular grid. Figure 5

contains a photograph of a three-dimensional grid used during this project.

Before discussing how to perform data sampling, it must be shown that grids

of arbitrary shape cannot be easily handled using ray casting techniques. It is not

7

necessary to sample data from an arbitrarily shaped grid onto a rectangular grid to

generate images of that data, but methods used to generate images can benefit from

the regular structure of a rectangular grid.

2.3 Ray Casting

Ray tracing is a graphics technique which point samples data to create images.

Ray casting is a form of ray tracing where rays do not spawn new rays at object

intersection points. In a full ray tracing algorithm, a ray is traced from a pixel along

a straight line into the volume until it intersects an object. From that point, several

new rays may be generated with different directions. All the rays, and their spawned

rays, have some effect on the color assigned to the originating pixel. The surface

characteristics of the object also has some effect on the pixel color and the spawned

rays' directions. In a ray casting algorithm rays are traced in the same manner, but

the intersections with objects are different.

For opaque objects, the color contribution is found at the intersection point

and the ray terminates. If an object is not opaque, the color contribution is found at

the intersection point, the ray's light level is adjusted according to its transparency,

and the ray continues along its original path. The VIPER program was implemented

using the ray casting method for volume rendering.

VIPER assigns a light intensity value to each ray, and as the ray is traced

through the volume its intensity decreases at every target intersection point based

on parameters set by the user. This attenuates the rays as they travel through the

volume. When the ray's intensity is small enough so that it cannot contribute a

significant value, or it exits the volume, the tracing is terminated. The cumulative

color from each intersection is then added and assigned to the pixel from which the

ray was cast.

This technique allows transparent surfaces to be rendered. Rays are attenu-

ated at object intersection points by a value between one and zero, where zero is

8

completely transparent, and one is completely opaque. Ray casting techniques are

computationally faster than standard ray tracers, but cannot provide all of the same

image enhancing features (23:61).

To trace a ray through a data grid, VIPER finds the starting position of the

ray, and uses the ray's direction to step through the volume one cell at a time. At

every cell intersection, the data value at the ray's entry and exit point is found by

linearly interpolating the data values from each vertex in the cell wall. This allows

the data values at the ray's entry and exit points to be compared with the target

values. If a target value lies between the entry and exit values, the ray is processed

to compute the color contribution.

Much of the CPU time spent in ray tracing is in calculating the location within

a volume, and finding object intersection points. Ray tracing is a popular graphics

technique for rendering images of objects modeled with a variety of geometric prim-

itives, and much research has been done to find ways to improve the technique. The

next section reviews several popular techniques for improving ray tracing algorithms.

2.4 Ray Tracing Improvement Techniques

To follow the argument prescnted against ray tracing an arbitrarily shaped grid,

it is necessary to develop a fundamental understanding of ray tracing algorithms.

The following discussion provides basic information on ray tracing techniques, and

associated problems. Techniques for solving these problems are presented to contrast

how they are, or are not, applicable to ray casting methods.

Several techniques have been developed to speed up ray tracing algorithms.

Many techniques focus on image improvement, which is directly related to the com-

putation time required to generate images. Ray casting is a simplified form of ray

tracing, but because of differences, improvement techniques for one may not be ap-

plicable to the other. Ray tracing is more popular than ray casting, because it

produces higher quality images (8:16).

9

Much of the CPU time spent in a ray tracing algorithm is in determining ray

locations, and object intersection points (9:19). Many ideas have been developed to

decrease the computation time needed for these two operations. One of the simplest

techniques to red,ce the time for locating objects is to use a bounding volume to

limit the search space.

Bounding 'Vlumes. The bounding object used most often is a sphere (9).

A sphere is used because of the simplicity of the geometry describing it; it is easy to

determine if a ray falls within the boundary of a sphere. VIPER uses the six faces

of the grid volume as a bounding object. Comparisons are made with the six faces

at each pixel location before a ray is cast. This allows a rapid determination of a

pixel's color when the data volume's projection does not affect it.

Digital Difference Analyzers. The second computationally expensive op-

eration is calculating a ray's position within a three-dimensional grid. These cal-

culations generally involve floating-point computations, and can require several bus

cycles to complete. Integer calculations can be accomplished in as little as a sin-

gle bus cycle on many computers. If a ray's position can be found using integer

arithmetic, the positional computation time can be significantly reduced.

Each grid cell must be processed in a volume rendering algorithm to find target

data values. A method for quickly stepping a ray through the grid is to use a three-

dimensional digital difference analyzer (3DDDA). A digital difference analyzer is a

method for drawing lines on a screen display using integer calculations. One way

Lu implement a 3DDDA would be to create two, two-dimensional analyzers working

in mutually perpendicular planes (8:18). A 3DDDA calculates a ray's path using

integer arithmetic in the same way a line generator does. This method is more

efficient than using floating-point operations, but has disadvantages.

The 3DDDA algorithm depends on the ray's origin and end point being in the

center of a volume cell. Another problem is the cells must be of constant length

along each axis direction. They do not have to be cubic in shape, but they must

10

be the same size because of the assumptions made by a line drawing algorithm

(16:24). This technique cannot be implemented in a volume rendering program

without constraining the structure of the input data.

Adaptive Subdivision of Space. An alternative to reducing the time re-

quired to locate position and intersection points, is to reduce the number of samples.

If the number of rays used to build an image is reduced, the time required to construct

that image is also reduced. Caution is required, because of the aliasing problem due

to point sampling. A widely accepted method to reduce aliasing is to sample at

higher rates (13:33). Techniques for determining the position oi those extra bampes

have been developed for ray tracers.

If the scene being sampled is not homogeneous, the time required to process

each pixel varies greatly. In a non-homogeneous scene CPU time is wasted by tracing

several rays in areas where the scene is not changing rapidly. However, image quality

suffers by tracing too few rays in areas where the scene is changing rapidly.

An adaptive method for subdividing the screen space can be implemented to

determine how finely a scene should be sampled. This technique is applicable only

when more than one ray per pixel is used to sample the scene. If a small number

of samples are taken at each pixel and compared, a decision can be made whether

further samples are necessary based on the color values obtained. If the individual

samples do not vary greatly, no further sampling is necessary. This allows image

generation using the minimum number of rays per pixel to satisfy image quality

requirements. A complete discussion of adaptive sampling of screen space can be

found in (28:343-349).

Fujimoto, and others, (8:24-25) argue that adaptive subdivision techniques

tend to be heuristic based, and often do not result in the desired effect. The com-

putation time spent determining the sample rate can be very close to the amount of

time spent sampling at a constant rate of several samples per pixel. The result of

constant sampling is some aliasing reduction traded for computation time.

11

Oth, e" techniques, such as distributed ray tracing, also focus on aliasing re-

duction while limiting computation time. According to (4), the Nyquist criteria is

violated in ray tracers because samples are taken at pixel locations which are uni-

formly distributed. The alternative is to vary the sampling rate in some non-uniform

way to satisfy the Nyquist criteria.

Distributed ray tracing methods are applicable to ray tracing, because they

focus on altering the sampling with the spawned rays. Full ray tracing techniques

have not been used in volume rendering algorithms principally because of the com-

putation expense (11:VIII-15). Very few of the methods for improving ray tracers are

applicable to ray casting, and thosc that are have been implemented in VIPER. An

alternative to sampling data onto a rectangilar grid would be to ray trace the data

in its arbitrary shape. The next section presents an argument for not attempting

such a method.

2.5 Direct Ray Tracing of Data Volumes

A grid constructed in a curvilinear coordinate system could be ray traced to

produce images of the data. Several problems associated with the grid characteris-

tics would cause an unacceptable level of overhead in both computation time, and

computer memory requirements.

Curvilinear Grid Structure. Data grids constructed for computational fluid

flow simulations can be either numerically generated, or constructed by hand. The

grids are generally constructed in a curvilinear coordinate system, and indexed by

i, j, and k, or other index variables (21). The transformations between i, j, and k

curvilinear coordinates to z, y, and z cartesian coordinates is one to one, and can

be analytic, or discrete (19). Each Z, j, and k index corresponds directly to a unique

x, y, and z value in cartesian space, however, the i, j, k indices may map to an

a,'tr-ry order of cartesian values.

At some point during the image rendering process, a transformation to screen

12

space is necessary. Before the screen space transformation can be performed, the

coordinate system transformation must occur. If the coordinate transformations are

discrete, a tabl,! must be built and maintained in memory, or accessed through a disk

file. If the transformations are continuous, a computation is required for each node

coordinate position. It is possible to build a table for the continuous transformations,

but in the worst case both the continuous and the discrete transformations could

be unique for each node point (19). In addition to the problems caused by the

transformations between coordinate systems, the transformation functions are often

not maintained.

When the grid is constructed, transformations are applied to the equations used

to calculate the data values. This results in data values being associated with their

cartesian location in space and being completely independent of the transformations.

The 1, j, and k indices are implicitly associated with their cartesian values by their

position in the data file (19). The grid data files are written using the i, j, and k

indices as loop control variables. This means the transformation functions are not

needed to manipulate the data, and their presence would only serve to make the

data files larger.

Finally, the cells in these grids do not necessarily have planar faces (19). The

walls of the cells can be surfaces of high-order functions which do not have to be

continuous throughout the grid. This would cause a great deal of error in a ray

tracing program that assumes planar cell walls, and uses linear interpolation. This,

combined with the discussion above, makes it clear that ray tracing an arbitrarily

shaped data grid directly is not desirable in terms of added overhead computation

time, additional memory requirements, and error introduction. The final alternative

to sampling data from arbitrary grids into rectangular grids is a cell integrating

method for rendering the images.

A Cell Integrating Method For Volume Image Rendering. A cell

integrating method for rendering volume images projects each cell onto the image

13

screen and processes every pixel affected by the projection. This technique generally

produces higher quality images because it does not suffer from the same aliasing

problems that point sampling methods do.

A cell integration technique is referred to as an object-space method for volume

rendering. This method can be implemented without ordering the coordinate points,

but the main drawback is the tremendous number of calculations required to compute

an image. Using this technique, several cells, and the pixels they project onto, can

be computed independently, making the algorithm a better candidate for a parallel

architecture system (24:66).

In addition, current implementations of cell integration techniques also take

advantage of the regularity of rectangular grids (27). A method of sampling data

from arbitrary grids into a rectangular grid could be beneficial to both volume imag-

ing techniques. The final choice for rendering images from data in curvilinear grids

is to sample that data onto a rectangular grid, and use rendering software capable

of handling those grids.

Mapping Irregular Grids into Regular Grids. Mapping an arbitrary grid

into a rectangular grid seems straight forward, but is not problem free. A curvilinear

grid generally has very dense spacing in areas of high interest, and sparse spacing

in other areas. As Figure 1 shows, the range of scales in a grid can vary and cause

problems in the mapping process by increasing the number of node points.

The obvious way to map an arbitrary grid into a rectangular grid would be to

project all the grid points onto two mutually orthogonai planes and use those points

to define the planes for the rectangular grid. This would guarantee that a node exists

in the rectangular grid for every data point in the arbitrary grid. As Figure 2 shows

for two dimensions, in the area where the grid spacing is very dense those planes

are extended the entire length of the volume. These planes create new intersection

points in the grid which must have data values assigned.

14

Figure 1. A Two-Dimensional Arbitrary Shaped Grid

Techniques similar to this have been implemented, but problems were encoun-

tered. Mapping a grid using this technique causes an excessive number of new nodes

to be created in the rectangular grid. The extra nodes require data assignments, and

that data is typically found using some form of interpolation (24:75).

In computational fluid flow research, methods of finite-element analysis are

used to collect computed data. As Zoltan Cendes (3:31) points out, methods of finite-

element analysis whose functions are high-order polynomials provide more accurate

solutions, but are not as flexible in modeling irregular boundaries. Therefore, it is

possible that for some data grids low-order polynomials are used in the simulations.

Using linear interpolation to increase the resolution of the data set should not

introduce more error than is already present. Craig Upson, and others (22), have

used this technique in their Application Visualization System (AVS). Marc Levoy

15

r I I I

- -

I I

I I I I ,

Figure 2. A Rectangular Grid Overlaid on an Arbitrary Shaped Grid

(13:34) also points out that a way to increase the resolution of a data set is to

interpolate to create new data points. He says if the interpolation method is a good

one, the accuracy of the visibility calculations is improved.

Once the nodes have been assigned data values, it is often necessary to filter the

size of the data set (24). The grids become too large for most computer memories,

and the data must be filtered to reduce the grid size. This study develops a method

for sampling the existing data directly onto a previously defined rectangular grid.

Using a filter to sample the data into the grid accomplishes the same thing as

interpolating, and then filtering, but in a singie step. The details for this method

are presented in Chapter 4. Before presenting the requirements analysis, a review of

current literature is presented.

16

2.6 Summary of Current Knowledge

Early efforts at rendering images of three-dimensional, scalar data were limited

by the display devices available, and were generally two-dimensional. Researchers

using vector graphics display devices tried to find symbols, or other methods, to

model data characteristics. As raster scan devices became available, color images

were introduced, and the first three-dimensional images were rendered.

Vector Display Systems. Kenneth Kroos (12) presented a study of vector-

based display visualization techniques in 1985. He found that a simple arrow-shaped

vector was the optimum graphic symbol to represent vector data in a flow field. He

was able to rapidly generate images of flow field data using this technique, but had

several problems with data representation. First, he found it difficult to display data

extremes with small display screens, and he had to generate several images to model

temporal features. Finally, his system did not handle large data sets well because

the resulting image was too complex for easy interpretation.

Particle tracing is a popular vector based technique of flow field imaging. This

technique consists of releasing particles in a flow field and tracing them as a function

of time. Particle tracing is still a very popular technique because it is relatively

fast and lends itself well to user interaction. The Application Visualization System

developed by Craig Upson (22:39), and others, uses a form of particle tracing called

particle edvection. This technique was found to be highly interactive when the

number of particles was limited to no more than about 30,000. Particle tracing is

also still considered a very useful te nique at NASA's Ames Research Center (25).

V;ector based flow field imaging systems have several advantages. These meth-

ods tend to be very fast, and provide a good environment for user interaction. They

also produce sharp, crisp lines and curves, but cannot provide filled-in solid areas.

Raster Display Systems. Winkelman and Tsao (29) were among the first

to report the use of raster display devices to visualize flow field data. They used

17

the raster device capability to represent data values with solid areas of color on the

screen. They validated the accuracy of their system by comparing their results with

photographs from wind tunnel tests. Although their method was successful, they

were limited to displaying two-dimensional slices of the data.

Smith, Sperry, and Everton (20) extended the two-dimensional techniques of

Winkelman and Tsao by generating several two-dimensional slices and combining

'Iem to produce a three-dimensional image. This technique provided additional

capability over the two-dimensional method, but left gaps between the slices, forcing

the user to guess about the flow field conditions in those gaps.

Raster display systems allowed for the advancement of image display devices,

and led to higher resolution systems. In addition to the higher resolution systems

came computer graphics techniques such as ray tracing, which could create images

that exploited the ability of those systems. Better display systems, and new graphics

techniques led to new ideas for rendering three-dimensional images.

Current Volumetric Rendering Techniques. A new approach to visual-

izing three-dimensional data was presented by William Loresen and Harvey Cline

(14). They treated the data being rendered as a volume formed from regular-sized

cubes, or voxels, with every voxel having a data value associated at each of its ver-

tices. Although this technique uses a data gradient in the rendering process, it still

reverts to using polygonal geometry to produce the surfaces of interest.

Their system enhanced the capability to rapidly produce images from different

viewpoints. This is possible because once the polygons are fitted, simple viewpoint

transformations are made before rendering addition images. Many problems can be

encountered during the polygon fitting process. Methods independent of geometry

were also developed.

Marc Levoy (13) developed a volumetric rendering technique to visualize three-

dimensional images using scalar data. His method does not use polygonal geometry

18

to model surfaces, instead it uses ray casting to directly create the images. Rays

are fired through the volume, and at the intersection point of a ray and a cell, the

data values at each vertex are trilinearly interpolated to find the local gradient.

The value of this gradient is used to determine the color and translucence of the

cell, and is factored into the final color of the pixel. The main advantages of this

technique are that there are no gaps in the data and the resolution of the final image

is dependent only on the resolution of the display device. Ray casting techniques are

point sampling algorithms, and suffer from aliasing problems.

The ray casting method of generating images from a three-dimensional data

set has been classified as a backward mapping algorithm by Lee Westover (27). He

has investigated a new approach of volume rendering he calls a "forward mapping"

algorithm. In this alternative approach, the data is directly mapped onto the im-

age plane. Examples of forward mapping algorithms include the Z-buffer and the

painter's algorithm. Westover's approach focuses on providing an interactive render-

ing environment by producing images in varying degrees of resolution.

Methods for visualizing three-dimensional scalar data tend to be designed for

special applications, and are generally complicated. As Craig Up"nri, and others,

have noted:

Traditionally, scientists and engineers have exhibited little interest
in developing these tools themselves, because they require too large an
investment to learn how to use or because they are outside the scientists'
area of interest. (22:3)

At Stellar Computer, the Application Visualization System (AVS) was devel-

oped. The AVS is an interactive visualization system based on an object oriented

approach that should be generic enough to span most of the needs for scientific visu-

alization. The system incorporates nearly all of the current techniques for rendering

images from three-dimeasional scalar data'. Filtering and mapping tools are provided

with AVS to transform data sets into forms suitable for the rendering algorithms.

19

The filtering transformations include interpolation, scaling, and warping capa-

bilities, while the mapping transformations consist of geometric mapping for contour

and surface generators. These transformation modules developed for AVS further

support the idea of pre-processing the data in order to prepare it for the particular

rendering algorithm.

AVS is the first attempt at a comprehensive commercial product for data visual-

ization. Because the package is a commercial product, very little specific information

on the algorithms implemented in the system is available. However, nothing found

in the current literature suggests that sampling data onto a previously defined grid

has been tried. In the next chapter the requirements analysis is developed for the

grid mapping routine.

20

III. Requirements Analysis

3. I Introduction

The system analysis and requirements analysis for a grid mapping algorithm

are presented in this chapter. The specification method used to perform the re-

quirements analysis is presented in Section 3.2. The functional requirements for the

mapping program are based upon this analysis. All requirements are classified as

user grid mapping requirements. They are first developed informally, then specified

by enumeration.

3.2 Specification Method

The method used to document the requirements analysis was the Air Force Ma-

terial Lab's IDEF0 requirements analysis language. IDEF0 is modeled after SofTech's

Structured Analysis and Design Technique (SADT), and is used by the Air Force

and other DoD agencies (10). The complete IDEF0 analysis documents are included

in Appendix A.

Structured analysis is designed to hierarchically decompose complex program-

ming tasks into smaller pieces that can be easily handled. The decomposition can be

based on data or processes. The IDEF0 method is based on processes, and is repre-

sented by a series of functional diagr .ms with an associated facing page text. Each

diagram represents one level of decomposition, and the facing page text provides

information that cannot be easily derived from the diagram.

The top level IDEFo diagram for the grid mapping algorithm is shown in

Figure 3. The diagram illustrates the concepts of the IDEF0 analysis language, and

provides a high level abstract for the mapping program. Data dictonaries can also

be used with he IDEF 0 language to further define data structures and processes.

Data dictionaries were not developed for this project.

21

Cartesian Coordinate System

I
Map Data Onto

Arbitrarily Shaped Grid Rectaagular Grid
Rectangular

(Scattered Data)

Grids

NODE: A-0 TITLE: Map Data To Rectangular Grids

Figure 3. Top-Level IDEF0 Diagram for the Grid Mapping Program

Each IDEF0 diagram represents functions with boxes, and the interfaces be-

tween functions are shown with arrows. Four types of arrows can be used; input,

output, control, and mechanism. Control and output arrows are required for each

function, but the others are optional. Input arrows enter the left side of each box

with the arrowhead touching the box. Output arrows exit the right side of the

boxes, and control arrows enter the top. Mechanism arrows enter the boxes from the

bottom.

These arrows show the flow of data to and from each function. Every function

is considered to transform its inputs into outputs according to the restrictions of

its control arrow. Mechanism arrows depict system calls the function uses to ac-

22

complish its task. Each function is assigned a number to help trace it through the

decomposition.

3.3 Requirements Development

Users with arbitrarily shaped three-dimensional data grids have the need for

a grid mapping program to take advantage of visualization software which depends

on rectangular data grids. Aeronautical engineers and fluid flow researchers often

perform computer simulations involving curvilinear grids, and are limited to visually

analyzing their data with systems designed to handle curvilinear grids. These users

also have special requirements because of the characteristics of their data grids. In

general, these arbitrarily shaped grids can have a very broad range of data densities.

The grids tend to be very dense in areas of high concern, and less dense elsewhere.

Informal Development. The method for constructing the rectangular grids

should be optional. Two straight forward methods would be to simply space the

planes in each axis direction in a constant manner between the grid extremes, or

place planes where the data points are concentrated. This flexibility offers users the

ability to make a trade off between computation time, and sampling accuracy.

Users must be able to select specific areas of the grid to zoom-in on for close

inspection. To perform the zoom, users must be able to carve out sections of the data

grid. This carving could occur before or after the grid has been mapped into rectan-

gular form. If the user can carve the grid before the mapping process, more flexibility

is provided because all the computer memory available for grid manipulation can be

used to sample the carved section at a higher rate. This technique of zooming in

on the dense areas of the data grids has been identified as a requirement for visu-

alization software by both fluid flow researchers and software developers (25:IV-16).

Once a grid, or a portion of a grid, is specified for visualization, a filtering function

must be specified.

In order to find the "best" filtering method for a particular data set, users

23

should be able to select from more than one filter type. The filter parameters should

also be adjustable. This flexibility allows experimentation with data sets to find the

filtering function best suited for that data.

The preceding informal development of the requirements for a grid mapping

system is further refined in the next section. To specify the requirements, an enu-

merated requirements specification is developed.

Enumerated Requirements Specification. The requirements for the map-

ping program should be explicitly specified before a design can be developed. The

previous section presented an informal discussion of the users' requirements. Those

requirements are explicitly defined through enumeration. Table 1 presents the spe-

cific enumerated requirements.

These requirements were developed based on the review of current literature,

and discussions with computational fluid flow researchers. The documented require-

ments analysis is located in Appendix A. The detailed design implementing each of

these requirements is developed in the rie-t chapter

24

Table 1. Enumerated Requirements for a Grid Mapping Program

1.0 Develop a method of mapping arbitrary grids into rectangular grids.
1.1 All grids of arbitrary shape, or scattered data points, must be

mapped into rectangular grids.

1.2 Users must be able to carve sections of the grid for mapping.

1.2.1 Bounding i, j, and k values for carved sections can be speci-
fied by the user.

1.2.2 Carved sections of grids must be treated the same as complete
data grids.

1.3 The method of grid construction must be optional.

1.3.1 Planes can be located in areas of high data concentration.
1.3.2 Planes can be located at constant intervals along each axis

direction.

1.4 A means to filter the data onto rectangular grids must be pro-
vided.

1.4.1 More than one filtering method must be provided.
1.4.1.1 A density weighting filter based on distance must be pro-

vided.
1.4.1.2 A Gaussian filter must be provided.
1.4.1.3 A Z-buffer type of filter must be provided.

1.4.2 Filter parameters must be adjustable if possible.
1.4.2.1 The user must be able to specify a multiplier for the

search filter radius.
1.4.2.2 The user must be able to specify the number of standard

deviations the filter radius represents for the Gaussian
filter.

25

I-. System Design

.4.1 Introduction

The design implementation for the grid mapping program is presented in this

chapter. The detailed design was implemented using structure charts to function-

ally decompose each hierarchical level of the requirements developed in Chapter 3.

Figure 4 illustrates the highest level of decomposition for the system.

Map
Main
Process
1..0

Ini t iali z eF Pr ce ss Save Grid
System grid to Disk

File
1.11.2 1.3

Figure 4. The High Level Structure Chart for the Grid Mapping Program

A functional decomposition was chosen for two reasons. First, the sampling

process lent itself to a functional decomposition because it consists of several inde-

pendent steps; examine the input data, build a grid, sample the data, and save the

26

output grid. Secondly, a variety of different methods can be used to build grids and

sample data. By decomposing these functions into independent moduies, several

modules for each function can be included in the system to offer a choice between

different methods. Designed in this way, the system is easily modified and main-

tained.

The charts diagram each functional unit's relationship with other modules in

the system in two ways. First, the modules at the top of each diagram perform the

supervisory, or controlling, function for each of the modules below them. Second,

the diagrams show the flow of data between the different modules. At each level in

the decomposition, the boxes in the structure charts assume the supervisor's number

followed by a number indicating its position relative to every other box at its level.

This numbering scheme makes it easy to determine the modules' relationships with

each other. The complete set of structure charts, and a more detailed explanation

of their function, is located in Appendix B.

The design was decomposed into the smallest possible set of related activities.

This resulted in six logical sections: system initialization, carving the input grid,

building the rectangular grid, the sampling methods, saving the output to a disk

file, and finally, the modifications to the rendering software. Each of these design

parts are discussed in the following sections. The last section in this chapter provides

instructions for compiling and running the program.

4.2 System Initialization

The system is designed to give users flexibility by allowing the manipulation

of several parameters, and requires a parameter file name as a command line argu-

ment. Table 2 illustrates the file structure, and required order of the user options.

Each parameter item is numbered, and includes a brief explanation of its function.

Comments are allowed in the file, and are recognized by an asterisk being the first

non 'white space' character on a line. The mapping program reads the parameters

27

by scanning an entire line at a time into a character string. If the string is not a

comment line, the particular parameter is scanned from the string using the format

required by that parameter. Comments can also follow parameters on the same line,

because everything after a parameter is ignored by the program.

Each parameter value is set in the file map-ini.c. The variables are declared

globally to prevent passing values through several different modules for initialization.

Error checking is difficult, because it cannot be known in advance what parameter

values are reasonable without some knowledge of the input data. Some checking is

provided for obvious unreasonable parameter values. The responsibility for accuracy

lies with the user.

The parameters do not have to appear in the first column of a line, but at least

one white space character, a tab or a space, must be present after a parameter and

before anything else on the line. The file names may also contain paths to different

locations on the user's disk, and will work as long as the operating system rules are

followed.

Once the parameter file has been built, the program is ready to sample data

onto a rectangular grid. Before the sampling occurs, the rectangular grid must be

constructed based on the input data, and other parameters set by the user.

28

Table 2. Parameter File Structure

I. The grid index file name. Paths are acceptable.

2. The grid data file name. Paths are acceptable.

3. Output disk file name. Paths are acceptable.

4. An integer '1' or '0' for carving the grid. A '1' means carve it, and a
'0' means do not carve it. If a '1' is given, the next 6 lines must an
integer value indicating the i, j, and k lower and upper bounds in that
order.

5. An integer '1' or '0' for which data value to view. A '1' means view
pressure values, and a '0' means view the Mach number.

6. An integer '1' or '0' for the number of planes to use in the rectangular
grid. A '1' means use the default value (100 planes per axis). A '0'
means other values are given. If a '0' is given, the following line must
contain 3 integers for the number of planes to use in the x, y, and z
axis,

7. An integer '1' or '0' for the method of grid construction. A '1' means
use regular spacing along each axis. A '0' means use variable spacing.

8. An integer '1' or '0' for the sampling method to use. A '1' means use
the Z-buffer method, and a '0' means use the A-buffer method.

9. A floating point number for the filter range multiplier.

10. If a '0' was specified for the sampling method, selecting the A-buffer
method, a '1' or '0' must must appear next to select either the density
filter, or the Gaussian filter. A '1' selects the Gaussian filter, and a '0'
selects the density filter.

11. If the Gaussian filter is selected, a floating point number is required
specifying how many standard deviations the filter radius represents.

29

.-3 Carving Grids

Because of the wide range of scales in curvilinear, or other non-rectangular

grids, the ability to carve specific sections is provided. By specifying the boundaries

for a carved section causes the program to ignore all data and node indices outside

that section. This means a particular section can be examined using all the computer

memory resources available to sample that data.

After the grid carving parameters have been established, the indices must be

examined to determine the range of the grid in each coordinate direction. Once this

information is obtained, the program builds the rectangular grid.

4.4 Building A Rectangular Grid

Scattered data, or data on an arbitrarily shaped grid, can be located in varying

degrees of density in the space it occupies. For this reason, two methods of building

the rectangular grid are provided.

The first method is to place all the planes in each coordinate direction at

constant intervals aiong the axis, The second method is to place the planes in

areas where the data is concentrated. The effectiveness of one method versus the

other is discussed in Chapter 5. The next two sections describe how each method is

implemented.

Constant Plane Spacing. First, the minimum and maximum coordinate

value for each axis is found by examining the coordinates in the grid index file. Once

these values are known, their difference is divided by one less than the number of

planes allocated for that axis to obtain a 'step' value. The first plane is located

at the coordinate minimum, and each plane thereafter is located 'step' units from

the previous one. Figure 5 is a photograph of an actual grid constructed from an

arbitrarily shaped data grid using constant plane spacing.

Variable Plane Spacing. One way to place planes along each axis with

30

0igure 5. A Grid with Constant Plane Spacing

variable spacing requires more computation time, and memory space. First, 'he

coordinate extremes are found in the same manner as for the constant plane method.

Next, the extremes are used to construct a series of coordinate bins which contain

distance ranges at '-ch location. Figure 6 shows the structure of the bins.

The n'r" :. , bins is determined by half the number of planes to allocate

alorig vac- ax:s. Th difference between the extremes is divided by the number

of bins to determie the bin 'step' value. The first bin is assigned the conrdinate

mirimur plus the bin step. Each bin thereafter is assigned the previous b: i's value

pis the step, making the last bin equal to the coordinate maximum.

After the bins are constructed, each coordinate value is exami cd, and placed

,n the proper bin I j.atirn. The criteria used to place a value i. that it niust be less

31

II If If...........

U 0

Figure 6. Coordinate Bins

than the bin value, but greater than the previous bin value. Once the correct bin is

found, the value is linked into a list of the other values at that bin locat:0n. Only

the unique coordinate values are kept at each bin location. Keeping only the unique

values prevents allocating an excessive number of planes in a bin range if many of

the coordinates in that bin range lie in the same plane.

When all the coordinates have been placed into the proper bins, the number

of values in each bin is counted, and summed, to obtain the totai nun:ber of unique

values. The value count at each bin is maintained to determine the number of coor-

dinates falling within the bin's range. Finally, the bin list is traversed to determine

the number of planes to place in each bin range.

32

For every bin with a point count greater than zero, the number of planes placed

in that range is found by the following equation:

np = kpI + 0 .5 (1)

tP

where np is the number of planes, bp is the number of points collected in that bin,

tp is the total number of unique points for all the bins, and pl is the total number

of planes to allocate for that coordinate axis.

This method can result in one more, or one less, plane than specified, because

the number of planes must be converted to an integer. To help relieve this problem,

np is rounded up.

The variable plane spacing method can result in a decrease of the grid range if

not enough points fall in the first and last bin locations. For this reason, when using

this method, the user can force the range to be maintained. This option results in a

plane being located at the coordinate minimum, and maximum, independent of the

number of points in those bins. Once the number of planes has been calculated for

each bin location, the grid is built.

The bin list is traversed once more, and for every bin with a plane count

greater than zero, planes are positioned in the same manner as with the constant

spaced planes. The plane starting position is the value of the previous bin location,

and stepped through the bin range up to, but not including, the current bin value.

Figure 7 is a photograph of a grid built from a data set using the variable plane

spacing method.

When construction of the grid is complete, the program samples the data onto

the grid using the sampling function specified in the parameter file. One of two

sampling methods can be selected by setting the appropriate parameters.

33

Figure 7. A Grid with Variable Plane Spacing

.5 Sarnpling .Mfethods

It is not possible to build a rectangular grid that fits the data well enough so

that each node in the grid is coincident with a data point in the input data set. In

addition, every node in the rectangular grid that can be assigned a data value must

have one assigned. This is necessary because of the requirements of the rendering

softv-are. >ee Section 4.7 for an explanation of the data input requirements.

To assign data values to the nodes in the rectangular grid requires some method

for sampling the input data. This sampling is accomplished using a filter to calculate

data values. Two sampling methods are implemented, with one method offering a

choice between t'vo filtering functions. The first method is similar to an A-buffer

(2:103-10!8), and the second to a Z-buffer (6:560).

34

An A-buffer Method. The A-buffer method for sampling data is a para-

metric form of a convolution filter (2). Pixel colors are determined by weighting the

color of each object overlapping the pixel, based on the amount of area it occupies.

The mapping program performs a similar function by assigning data to a grid node

based on its distance from the true location of the data point.

For each data point in the sample data, every node in the rectangular grid

falling within the radius of the filtering function receives some contribution from

that data value. The filter radius is calculated using the average of the smallest

and largest cell dimension in the rectangular grid. The user can specify a multiplier

for the radius to change its length to suit the particular data set being sampled.

By specifying a multiplier of less than 1.0, the radius length can be decreased, and

multipliers greater than 1.0 increase the length

The contribution is determined from a normalized weighting term. The weight-

ing term is calculated by subtracting the node's distance from the radius, and divid-

ing t-ie result by the radius. This results in weights of one for node points coincident

with a data point, and zero for nodes at, or beyond, the filter radius. The weight

is then multiplied by the sample data value, and both the result and the weight are

summed into the node to collect the contributions from all data points at that node.

After all data points have been processed, the summed contribution term for

each node is divided by the sum of the weighting terms at that nodc to determine the

final data value. The mapping program offers users a choice between two methods

for determining the weighting value.

A Density Weighting Filter. The first filtering function determines the

weight value based on the square of the distance error. This value is calculated by:

w= (2)

where w is the weight, r is the filter radius, and d is the Euclidean distance from the

35

node to the data point. The weight is squared to make the filter parabolic, rather

than triangular. Figure 8 illustrates the shape of a parabolic, and a triangular

sampling filter.

W = (r-d), W = ,T ,d)

Figure- 8. Density Weighting Functions

The weighting term is normalized to the filter radius to guarantee values be-

tween zero and one, and also to avoid arithmetic overflow and underflow problems.

A Gaussian Weighting Filter. The second filtering function is a Gaussian

method for determining the data weights. The weights are determined by:

W = e (3)

where d is again the Euclidean distance from the node to the data point. The term,

36

2u2 , is determined from the filter radius. The user specifies how many standard

deviations the filter radius represents, then 2o2 is found by:

2a2 = 2 [(4)

where r is the filter radius, m is the radius multiplier, and n is the number of

standard deviations the radius represents. Figure 9 illustrates the effect on the

filtering function by varying the number of standard deviations spanning the radius.

~o=2

7 =3

Figure 9. A Gaussian Weighting Function

A Z-buffer Method. A Z-buffer is a graphics technique for solving the

hidden surface problem in image rendering (6:560). A pixel color is determined from

37

the object which covers it that has the smallest depth distance error. The mapping

program implements a similar technique for placing data values.

When a data point is located, the grid cell that contains that data point is

found. The distance from the data point to each cell node is calculated. Every

node within that cell witri a distance less than, or equal Lo, the niter radius is

assigned that data value if no previous assignment has been made, or if the distance

from the present data point is less than the distance from the previous assignment.

If an assignment is made, the distance error is maintained at the node for future

comparisons.

Once the data has been sampled onto the rectangular grid, the grid is saved to

a disk file. The file name is specified by the user in the parameter file. The format

of the disk file is structured to comply with VIPER's input data requirements.

4.6 Saving the Grid to a Disk File

Before saving the grid to a disk file, it must be traversed to determine which

nodes do not contain data values. This is necessary because of the rendering al-

gorithm used. The rendering algorithm assumes each node in every cell contains

a continuous functional data value and interpolates from these values to determine

data values at positions inside the cell.

An arbitrarily shaped grid or scattered data necessarily does not completely

fill a rectangular grid built around it. This is due simply to the geometry of the

grids, and results in void areas within the rectangular grid. One solution is to insert

a flag value at those grid points. However, even with prior knowledge of the data

values, a flag which would not insert false indications in the image can be difficult

to find.

VIPER tri-linearly interpolates the data values at the point where a ray enters

a cell, and at the point it exits the cell. Target values are then compared to the entry

and exit values to determine if they lie within the cell. If a flag value, either positive

38

or negative, is located at one or more of t.o cell's vertices, the interpolation may

result in a range which could falsely contain a target value. For this reason a different

approach was taken.

Depending on the sampling method used, the largest data vlue is found during,

or after data olacement. Tf the A-buffering mrethod is used, the fnal data values

are not known until all data points have been processed. If the Z-buffering method

is used, the largest data value is found during data placement. Each node in the

rectangular grid contains a flag which is set during the data placement process.

When U ,dta placement is complete, every node with an unset flag is assigned a val',e

equal to twice the largest data value found.

This value is also written in the data file, and read by VIPER. During the

rendering process, if VIPER detects the flag value at any of the eight vertices of

a cell, that cell is ignored, and the rendering process continues. This technique

prevents the use of an extrapolation method to force every node to have a data

assignment. It also prevents having to build a rectangular grid contained wholly

within the arbitrary grid, and losing some information outside the grid.

For convenience, the grid is translated to the origin of the cartesian coordinate

system. The grid is also scaled so that at any viewing angle it fits completely within a

screen of size 1024 x 768 pixel resolution. The scaling prevents users from rendering

images too large and having them clipped by the screen. The next section presents

changes to VIPER's file format which affect its operation on both mapped, and

unmapped data grids.

4.7 Modifications to VIPER

The file structure for VIPER was slightly modified from that described in (1).

The old format required the x, y, z, coordinates, and data values be listed for each

node in the grid. This method resulted in file sizes exceeding 42 megaBytes for a

grid of size 100 cells on a side. The format was changed to list all the x values, the

39

y values, the z values, and finally the data values separately. The ordering of the

data values is unchanged, however, the file sizes were reduced to approximately 10

megaBytes each.

Finally, up to two additional entries are now required in the grid file. First,

after the vrid sizes are written, an inteaer '1' or '0' .must be written on a separate

line to tell VIPER if the input is a mapped grid. If the integer is set to '1', a mapped

grid, the data flag value must appear on the next line.

These modifications were implemented on a copy of VIPER so it could be

used to render images from grids generated by the mapping program. The last

section in this chapter gives instructions for installing, compiling, and running the

grid mapping program.

4.8 Compiling and Running Je P",,gram

The system was designed for use under the Unix environment, however, the

code is written in generic C, and should compile under any system supported by a C

compiler. During the testing process, every module in the program was compiled on

an IBM compatible AT clone using MicroSoft C version 5.1. The program requires

between 21 and 41 megaBytes of memory to execute using an input grid of size 80

x 80 x 80, depending on the type of Machine being used. On workstations with

32 megaBytes of main memory, the program executes with no memory problems,

providing sufficient swap space is available.

A Unix makefile is supplied with the package to facilitate compilation under

the Unix environment. Before using the makefile, issue the command make depend

to Unix. This inserts all the local dependencies for every file in the package into the

makefile. This is very useful when modifying the code, because Unix automatically

recompiles only those modules changed, and every other module affected by those

changes.

40

After the make depend command has been issued, the command make will

compile the system and name the executable file map. To execute the program,

simply type map f-f] configuration-file. The -f option will force the program to

maintain the input grid rdnges when using the variable plane spacing method for grid

construction. It has no affect when using the constant spaced plane spacing method.

ior informacion coni-er,,ig the format of the input grid, see the file README.1ST

included in the package.

The next chapter presents the testing used for verification, and validation of

the system. The validation results are presented along with color photographs of

images rendered from mapped grids.

41

V. Testing and Validation

5.1 Introduction

This chapter contains the results of the testing and validation phase of the

project. Soitware testing was accomplished in two steps: functionality testing, and

validation testing. Section 5.2 outlines the functional testing procedures. Once the

program was thoroughly tested for logical design, validation testing began. Data

sets of known structure were fabricated, and images of that data were rendcred.

Data sets from a computational fluid flow simulation were obtained from the Wright

Research and Development Center at Wright-Patterson Air Force Base, and images

of that data were rendered. The images were then presented to the donators for

comment. The results of the validation testing phase are outlined in Scction 5.3.

The analysis of the program performance is discussed from a qualitative per-

spective. No attempt is made to quantify the sampling methods, or the filtering

functions. The subjects of sampling and filteiing are complex enough to warrant

a separate study, and are beyond the scope of this project. The results using the

d;ifferenrt sampling methods, different filtering functions, and the different grid con-

struction techniques are discussed in the last section of this chapter.

5.2 Software Functional Testing

The testing method used was one similar to that described in (18:509). Each

of the lower level modules were implemented independent of each other. Driver

programs were written to test the function of each module. As more modules were

implemented, additional driver programs were written to test the function of the

new modules. During the course of the program development, a driver program was

written, and modified in a stepwise fashion, to test the function of the modules as

they were integrated into a single program.

42

As pointed out in (18), the testing method used often depends on the charac-

teristics of the program being developed. These characteristics may require a mix of

several methodologies to satisfy the testing requirements. The mapping program was

tested using criteria from more than one testing methodology. Some criteria, such

as a test plan, were not necessary for this project, because its size and complexity

did not justify it.

5.3 Validation Testing

According to (18:514), software validation is achieved through a series of tests

that demonstrate the program's conformance with the user requirements. Valida-

tion testing for the mapping program was based on the requirements established in

Chapter 3, but in addition, the validation testing considered thie concept behind the

program design.

From the start of this project it was not known whether sampling data onto

rectangular grids would result in images truly representative of the original data.

Careful research of methods previously used to visualize data from curvilinear grids

provided insight upon which the assumption was made that this technique should

work.

Each of the requirements outlined in Chapter 3 were implemtnted in the map-

ping program. Testing of the program based on these requirements revealed it was

successful. In addition to testing against the requirements, and more importantly,

the program was tested against the concept of sampling data onto a rectangular grid.

This testing was accomplished in two steps.

First, data sets of known structure and content were fabricated, and images

of that data were rendered. Next, actual data sets built on curvilinear grids were

obtained, and images of that data were rendered.

43

5.4 Validation of the Sampling Concept

The first step in validating the concept behind sampling data onto a rectangular

grid involved rendering images from known data sets. For this stage in the validation

testing process, three data sets of simple geometric shapes were fabricated. The three

shapes chosen were a sphere, a cylinder, and a cone. Tt va. determined these shapes

provided enough variety in structure to validate the sampling process.

Visual Validation Using Fabricated Data. Figure 10 contains photos of

images rendered from a data set containing a series of concentric spheres. The da'.,

set was fabricated on a grid built in a spherical coordinate system where:

x r cos(O) sin(O) (5)

y r sin(0) sin(O) (6)

z rcos(O) (7)

and

0 < 9 < 27r (8)

0 < 7r (9)

The radius, r, was increased by units of one starting at one to obtain a series of

concentric spheres. The value of the data items placed at each grid point was not

important during this phase of the testing. The important point was that the struc-

ture of the input data grid was retained during the sampling process. Each sphere

was assigned a different data value to allow several spheres to be viewed at once.

As Figure 10 shows, the structure of the spheres is maintained during the

sampling process. A few of the data values were chosen to illustrate the structure

of the spheres lying one inside the other. The outer spheres were rendered partially

transparent, and the inner most sphere was rendered completely opaque. The lines

in the image which appear to form edges of rectangular cells are due to the rendering

44

algorithm used by VIPER. Those lines interfere with each other and cause the illusion

of circular patterns. This problem is discussed in the last section of this chapter and

in the next chapter as well.

To further illustrate the physical location of the spheres with respect to one

another, an image with a portion carved away was rendered. The lower photo in

Figure 10 is an image from the same data set showing an internal view, making the

shell structure more apparent. This view also demonstrates one of the strengths of

volume visualization, the ability to view the internal and external structure of a data

set simultaneously.

Figure 11 illustrates the same features present in the spheres image for a cylin-

drical data set. The cylindrical data was constructed in a cylindrical coordinate

system where:

X = r cos(9) (10)

y = r sin(O) (11)

Z = z (12)

and :

0 < 9 < 27r (13)

As in the case of the spheres, the radius, r, was again increased by units of one

starting at one to obtain several cylindrical shells. The lower photo in Figure 11 is

an image of the same data set in with a portion of the image carved away to reveal

the internal structure. As in the case for the spheres, the same data values were used

in order to make direct comparisons between the two figures.

The last data set fabricated for use in the first step of the visual validation

process was a series of truncated conic sheli!. The truncated cones were also built in

a cylindrical coordinate system with the only difference being that the radius varied

45

U C ~ i'rc >nhces.External (Upper) and Internal 'Lovcr) i.

';r ~ - [I -yF:. era~ Iperand 1,- mral

linearly as a function of z. Figure 12 contains photos of the outside and internal

views of the conic shells.

The images from the fabricated data sets indicate that the structure of the data

was maintained during the sampling process. In order to provide further confidence,

test data from a finite-element analysis were obtained, and images of that data were

also rendered.

Visual Validation Using Actual Simulation Data. For the final step in

the visual validation process, test data from a finite-element analysis was obtained

from Dr Phil Webste- at the Wright Research and Development Center at Wright-

Patterson Air Force Base (26). Two data sets were selected, and several images were

rendered from each set. The images were presented to Dr Webster for his qualitative

comments. In addition, the images from each data set were compared to images

generated using PLOT3D (25). PLOT3D was chosen because it is the tool used by

researchers in computational fluid dynamics.

PLOT3D uses polygonal prin itives to render images from data on curvilinear

grids. As pointed out in Chapter 2, the dependency on polygonal primitives limits the

ability of the rendering software to viewing the external structure of the volume data.

This would not be the case if PLOT3D utilized transparent polygons. Some versions

of PLOT3D have the capability of using transparent polygons, but that capability is

limited. This makes direct comparisons of images from the two render' g methods

difficult. It was possible, however, to compare the structure of several Mach number

shells in the data with images rendered using PLOT3D.

Figure 13 is an image from the first data set where the Mach number is equal

to 1. The upper photo is the image produced by PLOT3D, and the lower photo

is the image produced by the mapping program and VIPER. The overall structure

of the Mach shell in both images "agree well". The subtle differences are due to a

combination of the different rendering methods, and the sampling problem mentiored

earlier.

48

F03Iq' :2. ('unl Slrcls, External (Upper) and Internal (Lower) %V*ie-ws

Figures 14 and 15 are images from both PLOT3D and VIPER using different

Mach numbers. In Figure 15 the wing-like structures are actually the representation

of the "tunnels" where the Mach number is equal to 1.9. A close examination of the

VIPER image reveals the same structure is present, but is represented differently

because of VIPER's non-dependency on polygonal primitives.

In all cases Dr Webster (26) believed the VIPER images were reasonably ac-

curate representations of his data. The remaining figures in this chapter are images

generated using the same data values from for second data set. Again, the images

from VIPER agree well with those from PLOT3D in terms of the structure of the

Mach shells.

50

Figure 13. The Mach 1.0 Shell From Data Set #1 (PLOT3D Upper, VIPER Lower)

51

Fiur 1. Thne Mach 2.5 Shell From Data Set #1 (PLOT3D Upper, VIPER lower)

52

Figure 15. The Mach 1.9 Shell From Data Set #1 (PLOT3D Upper, VIPER lower)

53

Figure 16. The Mach 1.0 Shell From Dat, Set #2 (PLOT3D Upper, VIPER Lower)

54

F g"Ire 17. The Mfach 2.5 Shell From Data Set -- 2 (PLOT3D Upper, VIPER Lower)

Figure 18. The Mach 1.9 Shell From Data Set #2 (PLOT3D Upper, VIPER Lower)

56

5.5 Test Results From Varying the Sampling Parameters

The two sampling methods produced images that varied somewhat. This was

not surprising considering the differences in the two methods. The A-buffer method

for sampling produced better images than the Z-buffer method.

A-Buffer Sampling. The A-buffer method for sampling produced more

accurate images from the data using both combinations of grid construction tech-

niques. The images of the simple geometric shapes presented earlier were rendered

using A-buffer sampling with the Gaussian weighting filter. The data structure was

maintained, and data accuracy was reasonably maintained as well. Table 3 lists

the Mach numbers at several of the shells along with the target values, ranges, and

shell colors given to VIPER during the rendering process. As the table shows, data

accuracy was maintained to within 0.07 units.

The distance weighting filter used with the A-buffer sampling was able to

preserve the data structure, but did not perform as well as the Gaussian filter for

preserving accuracy. The distance weighting filter assumes a constant, second order

distribution of the weighting terms based on the filter radius. If the frequency at

which the data is changing is high enough, this filter under samples in some areas.

The only way to increase the sampling rate using this filter is to shorten the radius.

The dependency of the filter radius on the data distribution is clearly shown in

Figure 12. The inner and outer most shells disappear toward the top of the image.

This is the result of the variable density of the data.

In each of the images, the data points lie at constant intervals along the radius.

For the sphere, this is true for any radius line, but for the cones and cylinders, it is

true only for radius lines which lie in a single z plane. As the data is viewed along

constant lines of radius, while varying € or 0, the density is inversely proportional

to the length of the radius. Therefore, at the outer limits of the data set, the

filter radius would not be large enough to properly sample the data using a simple

57

Table 3. Mach Number Values for Fabricated Data Sets

Shell Mach Target Value 1
Number Number and Range Color
1 0.00000000
2 0.00000000
3 0.00000000 0.00 + 0.01 white
4 23.14550249

20 5.61360891
21 5.45544726 5.40 ± 0.07 blue
22 5.30994244

39 3.85758375
40 3.80509717 3.80 ± 0.01 green
41 3.75469631

58 3.12093892
59 3.09294787 3.09 ± 0.005 yellow
60 3.06569670

78 2.67261242
79 2.65497122 2.65 0.01 red
80 2.63767481

density weighting filter. This observation supports the idea that the filter must be

dynamically determined based on the data distribution at each sample point.

Determining the filter parameters should not be difficult, because the density

and frequency of change are related. The density can be determined by indexing the

curvilinear grid at each sample point to calculate distances to the nearest neighboring

data locations. It is safe to assume that in areas of close grid spacing the probability is

high that the data may have a greater frequency of change (21). Further investigation

to determine the functions used to set the filter parameters is required.

With a Gaussian filter, the sampling rate can be altered without changing the

58

filter radius. By specifying the number of standard deviations spanning the radius,

the sampling frequency can be changed without altering the radius. Unfortunately,

it is still necessary to determine the distance of neighboring data points to determine

the data Frequency. The advantage of the Gaussian filter over the distance weighting

filter is that one additional degree of freedom is provided. Functions for determining

both the radius, and the num.ber of standard deviations offer a wider range of control

over the filter characteristics.

Grid Construction. In general, tie method of constant plane spacing re-

sulted in more accurate images than did the variable spacing method. The variable

spacing method required an order of magnitude more CPU time to sample the data

over the constant spaciaig method. This was due primarily to mairtaining linked

lists of unique coordinate values.

Figure 15 was rendered using constant plane spacing in the rectangular grid.

Figure 19 is the same data rendered from a variable spaced grid. Comparison of the

two images reveals the variable spaced grid sampled the data well in areas where the

planes were closely located to the data points, but poorly in other areas.

The algorithm implemented for determining plane location placed too much

emphasis on the dense ireas of the input data. information from the less dense areas

was lost, and the grid containcd cells with extreme size variances. The variable plane

spacing method may still have some merit, but it should be modified to spread the

plane locations using less emphasis on the dense areas of the input data.

These results demonstrate that spreading the sample locations over a wider

area ?roduce better results than attempting to sample only in very dense areas.

A smarter algorithrr_ fcr spreading the location of the planes could possibly result

in better sampiing, but that algorithm may bLe very difficult to 'mplernent, and it

is doubtful that the increase in sampling accuracy would out weigh the additional

p-ocessing time. The second method used for sampling was the Z-buffer technique.

The results for this method were 'iIar for the two grid construction metbiods.

59

Figure 19. A Mach 1.9 Shell From Data Set #1 Using Variable Plane Spacing

Z-Buffer Sampling. The Z-buffer sampling method required about half the

time to e .tcute than the A-buffer. This, however, was the only principle advantage

to this method. Figure 20 is an image of the Mach 1.9 shell from Dr Webster's first

data set using Z-buffer sampling with constant spaced planes. Figure 21 is the same

data, and sampling methol-. using variable spaced planes. Both figures show that

many cel.s . -L e grid contain constant color, and have a mosaic appearance.

This :s characteristic of Z-buffering techniques. The algorithm simply places

each lata n, :nt at the closest sample location it finds. The same sampling problems

'(curred with tne regular and the variable spaced grids. Although a noticeable

!,'ference in image quality is apparent, the Z-buffer sampling method stih! has some

• itv for data visualization.

60

Figure 20. A Z-Buffer Mach 1.9 Shell From Data Set #1 With Constant Plane
Spacing

Because of the faster execution time, the Z-buffer method can be used for pre-
. iminary ,visual analysis. Thi: point illustrates the flexibility the mapping program

of.ers. The program allows users to trade computation time for accuracte data repre-

senatlon. The Z-buffer sampling method also helped in determining the resolution

, --, ec'a: j u-ar. - grid.

The Z-huffer placed data samples only in the rectangular grid cells where an

:put data oint .vas located. If fhe rectangular grid was constructed at too high a

esolution, many' grid ceils remained empty. The resul ant image appeared broken up

S', ices along any .xis where the resolution was too high. Repeated experimentation

•.ith the. 7 mTer 2 ped dtetrmnethe resolution to build the rectangular grid.

61

.:e2>- A 7-Buffer Mach 1.9 Shell From Data Set #41 With Variabie Plane

Spacing

T-e 7esILits 4f :hDrovram resting show the concept behind sampling diata 'o

r~ctng~ar r:~s was successful. With continued research in thi's area, i- is likely

~ cax: an De furthner increased. The next chapter presents conc ,us~o:ns. ann

.~zz~sec a-~s ~rccrt~nedresearc n.

VI. Conclusions and Recommendations

6. 1 Introduction

The conclusions from the work accomplished are presented in this chapter. The

success of the project is evaluated based on those conclusions. Potential problems

are identified, and possible solutions are recommended. Finally, suggested areas

of continued investigation are presented for both the sampling program and the

rendering software.

6.2 Conclusions

The results of this work indicate it is possible to sample data from an arbitrary

source onto a rectangular grid for volume visualization. The images of the simple

geometric shapes presented in Chapter 5 clearly show that the structure of the input

data can easily be preserved during the sampling process. It is not, however, as

obvious that data accuracy can be maintained during the sampling process.

Sampling Problems. All the images presented in Chapter 5 show artifacts

due to sampling problems. The sampling problems occur when the data is mapped

to a rectangular grid, and when the images are rendered. As Craig Upson (24:27)

points out, three-dimensional techniques for interpolation, or other sampling meth-

ods, do not satisfy the requirements for visualization. He says one more dimension is

required, and adds that the details of how to achieve that are only just beginning to

be worked out. Both the rendering software and the sampling program contrib':ted

to data inaccuracy.

Image Rendering Sampling Problems. The lines forming rectangles in the

images are a result of VIPER's rendering r,.2thod. VIPER linearly interpolates data

7.-alues from each vertex in a cell to find the data value at the entry and exit points

of the cell. Along the edges of any cell, linear interpolation results in a constant

63

variation of the data between only two values; the two on either end of the cell edge.

If those two values lie within the range of a target value, every point along that edge

has the same color assignment.

This results in visible lines of constant color which stand out in the image,

because at small distances in any direction away 'rom the edge; the color begins to

vary as a function of more than two data points. This can also occur when a sample

ray lies completely in the plane of one of the cell faces. When this occurs, the four

data points at each vertex of the cell face completely determine the sample values

along that ray. If those four values do not vary much, or completely fall in the range

of a target value, the same phenomenon occurs. This problem is related to using

only one sample ray per pixel to determine color.

A possible solution to this problem would be to sample every pixel with more

than one ray, and average the samples. This form of sampling is recognized as one

of t.Le two accepted methods for reducing artifacts due to under sampling (13:33).

The other accepted method is a convolution technique where the final pixel color is

determined by a weighted sum of the colors from neighboring pixels (13:33).

The increased sampling method directly affects the time required to render

an image. In fact, the increase is linearly proportional to the number of samples.

This is because the same number of interpolations are required for each sample. The

convolution method, however, can be applied after image generation.

The advantage to performing the convolution after image generation is a sav-

ings in CPU time, and the opportunity to use several filters on each image. The

convolution technique requires fewer calculations to weight the color values of each

pixel. In addition to the CPU time saved, once an image is created, any number

of convolution filters can be applied to that image. Another alternative for reduc-

:ng the sampling artifacts due to image rendering would be to change the rendering

algorithm.

64

A cell integrating method can be implemented to render the data images. Once

the cell is integrated, every pixel covered by the cell's projection onto the viewing

plane can be processed. This technique results in images with far superior quality,

but is not recommended. As stated in Chapter 2, the ray casting method is much

faster than a cell integration method. During this project, it was observed that

VIPER required between two and twelve CPU hours to render an image using a Sun

4. The time was dependent on the grid size, and the image size.

The excessive processing time caused problems in experimentation with differ-

ent sampling parameters. If a cell integration method were implemented, the only

benefit would be higher quality images. What is needed during a research project

is a fast method for image rendering to determine the effect of varying the control

parameters. The data mapping program also experienced sampling problems, but

these problems had a different effect on the resulting images.

Data Mapping Sampling Problems. Sampling problems in the data map-

ping program were related more to maintaining the accuracy of the input data.

Curvilinear grids used for finite-element analysis can have a wide range of scales.

This range of scales causes a corresponding range of spatial densities of the data.

The mapping program was desigr ed with a constant filter radius which the

user can set. The problem with using a constant radius is that the Niquist criteria

can be violated. Sampling with a constant filter size assumes an input signal w:th

a frequency range corresponding to that filter. It was very difficult to find a radius

which did a good job sampling the data from every part of the input grid. If the

radius was set too high, the outer sections of the grid were sampled well, but the

dense areas were under samplcd. The opposite was true for small filter radii. This

means the input signal frequency range was much broader than anticipated.

This -esulted in a loss of data accuracy, which was difficult to control and

identify. A possible solution would be to dynamically determine the search radius

for every section of the input grid. The grids are easily indexed using the i, j, and

65

k index variables, and the- relative grid -n.cing can be determined at every data

sample.

If the relative grid spacing is determined for each data sample, the filter radius,

and number of standard deviations could be determined based on the spacing. It is

safe to assume that in sections of a curvilinear grid where the spacing is very small,

the frequency at which the data could be changing might be much higher than in

other areas (21). The radius should be set much smaller, and the number of standard

deviations much higher, when sampling d, a ia tl.ase arcz.8.

Implementing a dynamic filter radius should not slow down the program sig-

nificantly. The program executes on a Sun 4 in between 45 minutes and two hours

of CPU time for an input grid of size 80 x 80 x 80. Finding the functions needed to

determine that radius may require considerable investigation. The radius size should

be determined from both the input data, and the rectangular grid.

Even with the problems presented, the project was still successful. The results

clearly show that data structure can be maintained. The images rendered from the

test data donated by Dr Webster (26) also show that reasonable data accuracy was

maintained, and good agreement with PLOT3D (25) was achieved. These promis:ng

results justify continuation of research in this area.

6.3 Recommendations

Recommendations for future research efforts in the area of volume visualization

are presented in this section. Specifically, recommendations for enhancements to

both the rendering software and the sampling program are proposed. Several of the

proposals focus on new concepts which should be considered, while others recommend

methods to improve existing capabilities.

Future Enhancements. Volume visualization is still a relatively new con-

cept in computer graphics for analyzing three-dimensional data. Much emphasis on

the importance of visual analysis has been expressed by the scientific community.

66

In the months spanning this research effort, articles on volume visualization have

appeared almost monthly in publications such as IEEE Spectrum, IEEE Computer

Graphics and Applications, and IEEE Computer, to name a few. The Association for

Computing Machinery annual conference on computer graphics held in the summer

of 1989 had a significant portion of their presentation dedicated to the subject of

data visualization.

The Department of Defense has also expressed interest in data visualization

(15). Because the concept is still relatively new, there are many unanswered ques-

tions, and many techniques that have not yet been considered. According to (17),

the human brain is is capable of processing approximately 40 to 50 bits of informa-

tion per second when reading, or looking at pictures. Volume visualization can be

viewed as a means to reduce the size of a data set in an attempt to find those 40

to 50 bits which adequately convey the information. For these reasons, continuing

research into the subject of data visualization is justified.

Viper Enhancements. VIPER currently rendors images using only one sam-

ple per screen pixel to determine color. This under sampling causes artifacts in the

images for reasons previously discussed. VIPER should be enhanced to include both

methods previously mentioned for aliasing reduction. This improvement will provide

higher quality images without completely sacrificing the rendering time advantage

over cell integration methods.

Another weakness in the program is the requirement placed on the user to select

target values for image rendering. If some peculiar phenomenon is occurring in a

data set, it may go unnoticed if the user does not happen to select the correct target

values for viewing. A method could be implemented where the range of the data is

found, a color table created, and all the information in the data set is rendered in

the image. If a color legend is created showing which data values correspond to each

color, users can identify strange phenomenon, and associate it with a data value.

Finally, VIPER should not be limited to rendering images from a single scalar

67

value. In a computational fluid flow simulation five data values are associated with

each grid point. These data values can be used to calculate several variables of

interest. For a 100 x 100 x 100 grid, VIPER uses approximately eight megaBytes

of memory during execution. This usage is well below the abilities of many scientific

workstations, and should be exploited. The grid data structure can be easily modified

to retain more than a single data value for each grid node point. This would allow

users to render images with several different data values present simultaneously. The

interaction of several variables could be examined to determine their behavior with

respect to one another.

Mapping Program Enhancements. The results of this project have demon-

strated that sampling data onto rectangular grids is possible and feasible. Several

problems associated with sampling were discovered during the course of the inves-

tigation. The dynamic filter radius is certainly the first area for further research

to consider. The code required to implement a dynamic filter should be straight

forward, relatively easy to implement, and have a minimal impact on the program's

performance.

Different filtering functions should also be considered. Further investigation

into the characteristics of the data generated through finite-element analysis should

be accomplished to determine if the data follows some known analytic, or approx-

imate, mathematical distribution. Results of this investigation could lead to the

implementation of several filtering functions, offering users a choice to match the

filter as close as possible to the behavior of the data.

According to Dr Webster (26), a phenomenon of particular interest to fluid

flow researchers is the rate of change of Mach number values in their simulations.

To derive the surface gradients would require a program of considerable cc iplexity,

but it would have benefits for the rendering program. In the areas of constant Mach

values, the rate of change tends to be very slow (26). This causes extremely thick

surfaces of constant values, and makes transparent viewing of the images difficult.

68

The gradients of these surfaces, on the other hand, should be very sharp, and result

in much thinner surfaces making transparent viewing much easier.

Finally, the sampling program implemented the ability to calculate Mach num-

ber, and pressure number values only. Other values of interest, such as vorticity can

be calculated from the data on the input grids. Further investigation is required to

determine which values of interest should be offered by the program.

69

Appendix A. Requirements Analysis

This appendix contains the formal requirements specifications using the IDEF0

requirements specification language. For an explanation of the IDEF0 language, see

Section 3.2. References for the specification language are also given in that section.

Each box in every diagram represents a required function in the mapping sys-

tem at varying levels of abstraction. The facing page text for each diagram provides

an explanation for every function in the diagram. Every diagram, except the first,

has a facing page text document associated with it. In each case, the facing page

text precedes its associated diagram.

The diagrams progress from a very high level of abstraction to increasingly

lower levels, identifying the requirements for the mapping system at each level. The

mapping program is not an exceedingly complex software package. This is reflected

by being able to completely specify the requirements in only two levels of abstraction

using IDEF0 .

The results of the requirements analysis were used to implement the detailed

design for the mapping system. Appendix B contains the structure charts ased to

accomplish the detailed design. The detailed design is meant to have a very close

relationship with the requirements analysis. In fact, there should exist very close to a

one-to--one mapping between the requirements analysis and the detailed design. The

detailed design will, of course, contain more detail than the requirements analysis,

but the reader should be able to follow the development of the design from the

requirements analysis.

70

A-0 Map Data To Rectangular Grids

Abstract: This system accepts as input data

from an arbitrarily shaped grid, or scattered data.

The data is sampled onto a rectangular grid, and a

user file is written to the disk.

Cartesian Coordinate System

Map Data Onto

Arbitrarily Shaped Grid User FileRectangular

(Scattered Data)

Grids

NODE: A-0 TITLE: Map Data To Rectangular Grid

Figure 22. IDEF0 A-0 Diagram

71

AO Map Data to Rectangular Grid

Abstract: This system samples data from three dimensional, arbitrarily' shaped,

data grids, or scattered data, onto a rectangular grid.

Al Initialize System: This activity reads the user parameter file and con-

figures the system according to his/her desires. Table 2 describes each parameter

under the user's control.

A2 Process Grid: This activity takes an arbitrarily shaped grid as input,

and processes it into a rcctangular format suitable for the image rendering software.

A3 Save To Disk File: This activity saves the transformed data grid to a

disk file in the formkt required by VIPER. The file name the grid is saved undcr is

specified by the user.

72

Pile Pormat

Confu r.tion

Pile
Initlxia. User Parameters

System lCaQrtseian Coordinate

System

Arbitrary Shaped Grid Prcs illed Rectangular Grid

11 (j e Format
ile

Save to User Pile

Disk Pis 01
3

NODE: AO TITLE: Map Data To Rectangular Grid

Figure 23. IDEFo AO Diagram

73

Al Iitialize System

Abstract: This activity reads the user parameter file and configures the sys-

tem according to his/her desires. Tdbie 2 describes each parameter under the user's

control.

All Read Input File: Thir activity reads the parameter file and passes the

user's choices to the Set User P7_rameters activity.

A12 Set User Parameters: This activity initializes the system control vari-

ables based on tLe user choices.

74

Cfiguration Fie RedUsrChie

Parameter Data Typos

NODE: Al TITLE: Initialize System1

Figure 24. IDEF0 Al Diagram

A2 Process Grid

Abstract: This activity takes an arbitrarily shaped grid as input, and pro-

cesses it into a rectangular format suitable for the image rendering software.

A21 Carve Grid Section: This activity cuts a portion of the input grid for

processing based on the user set boundaries.

A22 Build Rectangular Grid: This activity constructs the rectangular grid

onto which the data will be sampled. The size, and plane spacing are determined by

the user parameters.

A23 Sample Data: This activity samples the data onto the rectangular grid.

The sampling method, filtering function, and filter radius multiplier are determined

by the user parameters.

76

Ct

User Parameters

Orid Construction Parameters
Grid Boundaries

Arbitrary

Shaped Grid Carve Grid Grid Subsection
r Sect:on

C2

Cartesian Coordinate
System

Arbitrary Shaped Grid Rectangular Rectangular Grid Sampling Parameters
F u 2 rid 2 A2 Diagram

7Fi7ed
iSample I Rect agular

IGrid

NODE: A2 TITLE: Process Grid

Figure 25. IDEFo A2 Diagram

77

Appendix B. System Design

B. 1 Introduction

This appendix contains the structure charts used to accomplish the detailed

design for the sampling program. Each box in the charts represents a function or

module in the program. The relationship between each function is illustrated by the

position of the boxes with respect to each other.

The boxes at the top of each diagram perform the supervisory, or control,

function for the boxes under them. This is further illustrated by the lines connecting

the boxes. The arrow head on the lines point from the calling module to the called

module.

Detailed Design. The charts are organized in a hierarchical fashion with each

chart revealing more lower level detail of the program implementation. Figure 26

displays the highest level of the program function. The numbers in the boxes are the

numbers assigned to Lhe corresponding code modules. The numbering scheme allows

the position of any module to be quickly determined. At each level of decomposition

the lower level modules inherit the upper module's number, along with additional

numbers to identify its position relative to every module at the same level.

As Figure 27 sh.,::, data flow between modules is represented by open circles

with a line and arrow head attached. The arrow head indicates the direction of

data flow. A short description is given for each data item, but the description is not

necessarily related to the structure of the data. The combination of the numbering

scheme and the representation of the data flow make it very easy to trace data

through the program. This feature is useful for maintaining and mo'difying the

program.

Modules which perform input and output functions are identified by double

vertical lines on either end of the box. Some modules may be called by more than

78

Map
Main
Process
1.0

Figure 26. Level Zero Detailed Design Structure Chart

one other module. This may be shown by a diagonal line in the upper left corner

of a box, or not shown at all. Module 1.2.5.1, get the three dimensional grid index

in Figure 29, is called by several modules in the program. Although this is not

indicated on the structure charts, is is clearly documented in the source file.

79

Initialize
System

Figur 27STeantapltinDealenesg

NamesMet80

Process
Grid

1.2

Coordin ate

BinP Coordina

Bittreme

igue2.TeGicrcehn ealdDsg

BinI

Put The
Data

Which cKData ~

Coordinat In e

Pressure MachA-bffe

Figure 29. The Data Placement Detailed Design

82

Appendix C. Unix Manual Page

A Unix manual page was written for the mapping program, and a copy of

that page is contained in this appendix. The manual page conforms to the format

required by Unix, and can be installed on any Unix system.

The manual page is meant to provide a quick, on line reference for the mapping

program. The file name for the manual page is map.1, and is included as part of

the source code package. Suggestions for improvement, or change, are welcome, and

should be sent to the Electrical and Computer Engineering Department, School of

Engineering, Air Force Institue of Technology at Wright-Patterson Air Force Base

in Dayton Ohio.

83

MAP(LOCAL)

map - create a rectangular grid from scattered data

SYNOPSIS
map [-f] configuration filename

DESCRIPTION
The map program creates a rectangular grid, and samples
input data from the files specified in configuration file.
The program will build a grid of variable, or constant plane
spacing, and create an output file conforming to VIPER's
input requirements.

Two sampling methods are offered; A-Buffer, and Z-Buffer. If
A-Buffer is rhosen, either a density weighting, or a Gaus-
sian filter can be specified.

The program expects the grid input file structure in the
form used by the the Ccmputational Fluid Dynamics Group at
WPAFB. These grids come in two files: one for the grid
indices, and one for the grid data. Before the map program
can process these files, the grid data file should be
transformed using trsform (part of the tools package).

The -f option is the only command line option available with
the map program. It forces the program to maintain the
input data coordinate ranges when using the variable spaced
method for plane construction.

The user configurable parameters for the program should
appear in the configuration file. The parameters are listed
below in the order expected by the map program. Each param-
eter is briefly explained, and a sample configuration file
is given in the EXAMPLES section.

USER CONFIGURABLE PARAMETERS
Number Explanation

I ' input grid index file (paths acceptable)

2 The input grid data file (paths acceptable)

3 The output rectangular grid file name (paths accept-
able)

I A '1' nr '0' for carving the input grid. A '1'
means carve the grid, a '0' means do not carve the
grid. If carving the grid, the next six lines of
the configuration file should have -he i, i, and k
lower and upper bounds, (one bound per line, in the
given order).

MAP (LOCAL)

5 A '1' or '0' for the viewing parameter. A '1' means
view pressure numbers, a '0' means view mach
numbers.

6 A 'IV or '0' for the number of planes to use in con-
structing the grid. A '1' means use the default
(100 per axis), a '0' means other values are speci-
fied. If other values are used, all three should
appear on the next line (x, y, and z).

7 A 'IV or '0' for plane spacing method. A 'I' means
use constant spacing, a '0' means use variable spac-
ing.

8 A 'Il or '0' for the sampling method. A 'Il means
use Z-buffer, a '0' means use A-buffer.

9 A floating point value for the filter radius multi-
plier.

10 If a-buffer sampling was selected, a I'' or '0' to
specify the filtering function. A 'I' means use the
Gaussian filter, a '0' means use the density weight-
ing filter.

II If the Gaussian filter is used, a floating point
number for the number of standard deviations span-
ning the filter radius.

EXAMPLES
map -f test.cfg

SAMPLE CONFIGURATION FILE

Parameter File Comments

grd!C9.bin * The input grid index file

mq109.bin The input grid data file

machl.grd * The grid output filename

1 * Indicates carve the grid

0 * i lower bound

79 * i upper bound

0 * j lower bound

60 * j upper bound

20 * k lower bou-i

2

A P (I AL)

65 k upper bound

0 * Produce a mach shell grid

2. * Use the default number of planes

! * Use constant plane spacing method

0 * Use the A-buffer sampling technique

1.0 * The filter radius multiplier

1 * Use the Gaussian sampling filter function

6.0 * The filter radius is 6.0 standard devia-
tions long

3

Bibliography

1. Bridges, David J. Volumetric Rendering Techniques for the Display of Three-
Dimensional Aerodynamic Flow Field Data. MS thesis, AFIT/GCS/ENG/88D-
2. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, 1988.

2. Carpenter, Loren. "The A-buffer, an Antialiased Hidden Surface Method,"
Computer Graphics, 18(3):103-108 (July 1984).

3. Cendes, Zoltan J. "Unlocking the Magic of Maxwell's Equations," IEEE Spec-
trum, 26(4):29-33 (April 1989).

4. Cook, Robert L., et ad. "Distributed Ray Tracing," Computer Graphics,
18(3):137-145 (July 1984).

5. Drebin, Robert A., et al. "Volume Rendering," Computer Graphics, 22(4):65-
74 (August 1988).

6. Foley, J. D. and A. Van Dam. Fundamentals of Interactive Computer Graphics.
Reading, Massachusetts: Addison-Wesley Publishing Company, 1984.

7. Frenkel, Karen A. "Volume Rendering," Communications of the ACM, 32:426-
435 (April 1989).

8. Fujimoto, Akira, et al. "ARTS: Accelerated Ray-Tracing," IEEE Computer
Graphics and Applications, 6(4):16-25 (April 1986).

9. Glassnz:, Andrew. "Introduction to Ray Tracing." Course notes, Siggraph 1987.

10. Hartrum, Thomas C. "System Development Documentation Guidelines and
Standards." Technical Report, Air Force Institute of Technology, January 1989.
Draft #4.

11. Johnson, E. Ruth and Charles E. Mosher Jr. "Integration of Volume Rendering
and Geometric Graphics." In ACM SIGGRAPH '89 Course #28, State of the
Art in Data Visulization, pages VIII-14 - VIII-19, July 1989.

12. Kroos, Kenneth A. "Computer Graphics Techniques for Three-Dimensional
Flow Visualization," Frontiers in Computer Graphics (1985).

13. Levoy, Marc. "Display of Surfaces from Volume Data," IEEE Computer Graph-
ics and Applications, 8(3):29-37 (November 1988).

14. Lorenson, William E. and Harvey E. Cline. "Marching Cubes: A High Resolu-
tion 3D burface Construction Algorithm," Computer Graphics, 21(4):163-169
(July 1987).

15. McCormick, Bruce M., et al. "Visualization in Scientific Computing," Computer
Graphics, 21(6):1-14 (November 1987).

84

16. Newman, William M. and Robert F. Sproull. Principles of Interactive Computer
Graphics. New York: McGraw-Hill Book Company, 1979.

17. Pierce, J. R. and J. E. Karlin. "Reading Rates and the Information Rate of a
Human Channel," Bell System Technical Journal, 36:497-516 (March 1957).

18. Pressman, Roger S. Software Engineering, A Practitioner's Approach. New
York: McGraw-Hill Book Company, 1987.

19. Scherr, Stephen. Mathemetician. Personal Interview. WRDC/FIMM, Compu-
tational Aerodynamics Group, Aeromechanics Division, Flight Dynamics Lab,
Wright Research and Development Center, WPAFB OH, 18 September 1989.

20. Smith, R., et al. Visualization of Computer-Generated Flow Fields: Flow Vi-
sualization, Volume 3. Washington, D. C.: Hemisphere Publishing Company,
1985.

21. Thompson, Joe F., et al. Numerical Grid Generation. New York: North-
Holland, 1985.

22. Upson, Craig, et al. "The Application Visualization System: A Computational
Environment for Scientific Visualization," IEEE Computer Graphics and Appli-
cations, 9(4):30-41 (July 1989).

23. Upson, Craig and Michael Keeler. "V-Buffer: Visible Volume Rendering," Com-
puter Graphics, 22(4):59-64 (August 1988).

24. Upson, Craig and David Kerlick. "Volumetric Visualization Techniques." In
ACM SIGGRAPH '89 Course #13, 2D and 3D Visual Workshop, pages 1-86,
July 1989.

25. Watson, Val, et al. "Use of Computer Graphics for Visualization of Flow Fields."
In ACM SIGGRAPH '89 Course #28, State of the Art in Data Visualization,
pages IV-13 - IV-18, July 1989.

26. Webster, Dr. Phil. Aerodynamic Engineer. Personal Interview. WRDC/FIMM,
Computational Aerodynamics Group, Aeromechanics Division, Flight Dynam-
ics Lab, Wright Research and Development Center, WPAFB OH, 20 October
1989.

27. Westover, Lee. "Interactive Volume Rendering." Department of Computer Sci-
ence, The University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina.

28. Whitted, Turner. "An Improved Illumination Model for Shaded Display," Com-
munications of the ACM, 23(6):343-349 (June 1980).

29. Winkelmann, A. E. and C. P. Tsao. Flow Visualization Using Computer-
Generated Color Video Displays of Flow Field Survey Data: Flow Visualization,
Volume 3. Washington, D. C.: Hemisphere Publishing Company, 1985.

85

Vita

First Lieutenant Raymond P. Lentz, III

He graduated from Menchville High School in Newport News,

Virginia in 1973 and enlisted in the United States Air Force. He served as an aircraft

mechanic from 1973 until 1979 when he was honorably discharged.

Lieutenant Lentz returned to the Air Force in 1981 to pursue a selection for the

Airman Education and Commissioning program. In 1983 he entered the University

of South Carolina. He graduated. with honors in 1985 and received a Bachelor of

Science Degree in Electrical and Computer Engineering.

Upon commissioning as a second lieutenant on April 3, 1986 Lieutenaht Lentz

was assigned to the 65851h Test Group at Holloman Air Force Base in New Mexico.

There he served as an Advanced Plans Engineer, and Radar Cross Section Analyst

until May, 1988.

In June, 1988 Lieutenant Lentz entered the School of Engineering, Air Force

Institute of Technology to pursue a Master of Science Degree in Computer Engineer-

ing. He is married to Sombhong (Nedpirom) Lentz, of Bangkok, Thailand.

86

iNCLASS IF ED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT,/GCE/ENG/89D-4

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENG
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force institute of Technology

Wright-Patterson AFB OH 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUPEMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AFWL ISCP
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Kirtland AFB NM 87117 ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classification)

SAMPLING SCATTERED DATA ONTO RECTANGULAR GRIDS FOR VOLUME VISUALIZATION (UNCI.ASSIFIFDN

12. PERSONAL AUTHOR(S)

Raymund P. Lentz, III, B.S., ist Lt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

MS Thesis FROM TO 1 1989 December 98
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Computer Graphics
1 05
704 I 0 Flow Fields

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Phil Amburn, Maj, USAF

Professor of Computer Systems

20. DISTRIBUTION/ AVAILABILITY OF ABSTRA., I .c .,TY CLASSFICATiON

L] UNCLASSIFIED/UNLIMITED [SAME AS RPT C3 DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSBLE INDIVIDUAL 22b, TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Phil Amburn, Maj, USAF (513) 255-2040 AFIT/ENG

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

Three dimensional arrays of scalar data representing spatial volumes arise in many

scientific applications. Analysis of this type of data is difficult because of the size of the

data sets. Computer graphics techniques for rendering images of three dimensional data

have been developed recently.

In computational fluid flow analysis, methods for constructing three dimensional numer-

ical grids are being refined. This technique is particularly suited for simulations involving

finite element analysis. The three dimensional grids produced by these methods are gener-

ally not rectangular in shape.

Many graphics methods for rendering three dimensional volume images take advantage

of the physical structure of rectangular grids. Because finite element analysis is useful

in fields other than fluid flow analysis and the numerical grid has promising applications,

methods for handling arbitrarily shaped data grids are needed.

This thesis investigation develops a method for sampling data in virtually any form

onto rectangular grids. Two sampling methods are developed and implemented using two

different sampling filters. The results were successful in rendering images of both fabricated

data and data from a fluid flow simulation.

Input data distribution characteristics affecting the sampling techniques were identified,

and possible solutions are provided. The goal of this study was to determine if data could

be successfully sampled from a grid of arbitrary shape onto a grid of rectangular shape.

The results indicate that this is indeed possible.

UNCLASSIF'IED

